![]() |
Конет І.М., Паньков В.Г., Радченко В.М., Теплінський Ю.В. | ![]() |
|---|---|---|
ОБЛАСНІ МАТЕМАТИЧНІ ОЛІМПІАДИ |
||
У посібнику розглядаються деякі найбільш поширені методи розв'язування олімпіадних задач та задачі, що пропонувалися юним математикам на обласних олімпіадах упродовж останніх двадцяти двох років (1983-2005). До всіх задач наведено вказівки щодо їх розв'язання або дано повні розв'язки. |
||
Посібник розрахований на вчителів математики, студентів фізико-математичних спеціальностей вищих навчальних закладів та учнів, що цікавляться розв'язуванням нестандартних математичних задач. |
||
Рекомендовано Міністерством освіти України (лист №1107 від 27.10.97) |
||
| ПЕРЕДМОВА | ||
| РОЗДІЛ І. ДЕЯКІ МЕТОДИ РОЗВ'ЯЗУВАННЯ ОЛІМПІАДНИХ ЗАДАЧ | ||
| §1. МЕТОД МАТЕМАТИЧНОЇ ІНДУКЦІЇ | ||
| §2. ПРИНЦИП ДІРІХЛЕ | ||
| §3. ЗАДАЧІ ПРО ЦІЛІ ТА ІРРАЦІОНАЛЬНІ ЧИСЛА | ||
| 3.1. ЗАДАЧІ З ЦІЛИМИ ЧИСЛАМИ | ||
| 3.2. ЗАДАЧІ З ІРРАЦІОНАЛЬНИМИ ЧИСЛАМИ | ||
| §4. МНОГОЧЛЕНИ В ОЛІМШАДНИХ ЗАДАЧАХ | ||
| §5. ФУНКЦІОНАЛЬНІ РІВНЯННЯ | ||
| §6. ДОВЕДЕННЯ НЕРІВНОСТЕЙ | ||
| §7. ПРИНЦИП КРАЙНЬОГО АБО БЕРЕМО НАЙБІЛЬШИЙ | ||
| §8. ДОВЕДЕННЮ ДОПОМАГАЄ ІНВАРІАНТ | ||
| §9. ПРО НАПІВІНВАРІАНТИ | ||
| §10. ІДЕЯ РОЗФАРБУВАННЯ | ||
| §11. ІГРИ ДВОХ ОСІБ | ||
| §12. КОМБІНАТОРИКА В ОЛІМШАДНИХ ЗАДАЧАХ | ||
| РОЗДІЛ II. УМОВИ ЗАДАЧ ОБЛАСНИХ МАТЕМАТИЧНИХ ОЛІМПІАД | ||
| §1. ЗАДАЧІ ДЛЯ СЬОМОГО КЛАСУ | ||
| §2. ЗАДАЧІ ДЛЯ ВОСЬМОГО КЛАСУ | ||
| §3. ЗАДАЧІ ДЛЯ ДЕВ'ЯТОГО КЛАСУ | ||
| §4. ЗАДАЧІ ДЛЯ ДЕСЯТОГО КЛАСУ | ||
| §5. ЗАДАЧІ ДЛЯ ОДИНАДЦЯТОГО КЛАСУ | ||
| РОЗДІЛ III. РОЗВ'ЯЗКИ ТА ВКАЗІВКИ | ||
| §1. СЬОМИЙ КЛАС | ||
| §2. ВОСЬМИЙ КЛАС | ||
| §3. ДЕВ'ЯТИЙ КЛАС | ||
| §4. ДЕСЯТИЙ КЛАС | ||
| §5. ОДИНАДЦЯТИЙ КЛАС | ||
| ЛІТЕРАТУРА | ||
Обласні математичні олімпіади. Друге видання, доопрацьоване і доповнене. / За загальною редакцією І.М. Конета - Кам'янець-Подільський: Абетка. - 2005. - 344 с. |
||